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Statistical Properties of Linear Antenna Impedance in
an Electrically Large Cavity
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Abstract—This paper presents models and measurements
of linear antenna input impedance in resonant cavities at high
frequencies. Results are presented for both the case where the
cavity is undermoded (modes with separate and discrete spectra)
as well as the overmoded case (modes with overlapping spectra).
A modal series is constructed and analyzed to determine the
impedance statistical distribution. Both electrically small as well
as electrically longer resonant and wall mounted antennas are
analyzed. Measurements in a large mode stirred chamber cavity
are compared with calculations. Finally a method based on power
arguments is given, yielding simple formulas for the impedance
distribution.

Index Terms—Antenna measurements, antenna theory, cavities,
cavity resonators, chaos, impedance, resonance, statistics.

I. INTRODUCTION

I N THIS PAPER, statistical models for the input impedance
of a linear antenna in an electrically large cavity are de-

veloped [1]. Cases where modes have overlapping spectra, and
the antenna impedance approaches the free space value [2], as
well as separate discrete spectra [3], [4] are both considered.
The behavior of the impedance and its extreme values are useful
in determining the transmission and reception characteristics of
an antenna and practical bounds for these quantities. An elec-
trically short center driven dipole is treated first by means of a
modal series for the cavity field. The statistical properties of the
high-frequency cavity field are introduced [7], [10], [11] from
which distributions for the impedance are extracted by means of
Monte Carlo simulation and asymptotic analysis. These simula-
tions and asymptotic results are compared to measurements in a
mode stirred chamber. It is then shown how these results apply
to an electrically longer resonant dipole and a wall-mounted
monopole antenna. The known enhancement of the field near
the cavity wall [24] is found to correspond to the behavior of
the field correlation function, which is needed in the treatment
of the monopole antenna. Finally, a simplified approach using
conservation of power is carried out that yields practically useful
formulas for the impedance distributions and extreme values.
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II. ELECTRICALLY SHORT ANTENNA

We use the potential representations for the field in the
Coulomb gauge similar to those in Smythe [4]; however, the
finite wall conductivity is introduced differently, consistent
with the approach in Collin [5] (derivations can be found in [1]
and a summary in the Appendix). The electrically short center
driven dipole, aligned with the axis, has current distribution

. Using this in the equations (69), (74),
(75), (77), and (78) of the Appendix, with time dependence

, gives the input impedance

(1)

where is the antenna radiation resistance in free space
which, for a short dipole of length with triangular current
distribution, is [6]

(2)

The quantity ohms is the impedance of free space
and is the wavenumber (is the vacuum velocity of
light). The quantity

(3)

is the local impedance of the antenna, consisting of the ohmic
resistance and local reactance [this includes the quasistatic
part due to the cavity but can be approximated as the free space
value consistent with (75), and with (77)]

(4)

The capacitance is dominant for a short dipole, with [6]

(5)

where the expansion parameter is

(6)

and the antenna fatness parameter is . The in-
ductance is found to be

constant (7)

where the leading term is correct but the constant
is slightly different than the proper first order term

(this first order inductance result can be corrected by re-
taining a higher order frequency term in the current distribution;
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the total inductance is, nevertheless, reasonably accurate). The
cavity volume is , its quality factor is , the eigenfrequencies
of the perfectly conducting cavity are , is the electric per-
mittivity of free space, and the Coulomb gauge eigenfunctions
have normalization

(8)

III. STATISTICS OFCAVITY FIELD

This paper is concerned with electrically large, complex cav-
ities, for which a statistical description of the modes in (1) be-
comes applicable [7], [8], [9], [10], [11]. The cavity eigenvalues
(resonant frequencies) have spacings that can be described
by a slowly varying mean times a random variable

(9)

where the asymptotic formula for the mean is [12], [13]

(10)

The probability density function for the normalized spacingis
Poisson (exponential) when the cavity geometry is simple (e.g.,
separable where eigenvalue degeneracy occurs frequently) [11],
[12]

(11)

and is Rayleigh (Wigner) when the cavity is complex [10], [12]

(12)

Complex geometry is typical of electromagnetic compatibility
applications and thus the Rayleigh spacing is more frequently
encountered. Constant spacing

(13)

is also useful to study because, as will be shown later, it gives
similar results for the impedance as does the Rayleigh spacing,
and is simple enough that asymptotic analysis of the modal se-
ries (1) can be carried out.

The cavity eigenfunctions are taken to be isotropic (all three
components have similar statistics) with Gaussian density [7],
[11]

(14)

(15)

which follows the chosen normalization [7]

(16)

The normalization is assumed to be the same throughout the
cavity. An argument in support of the Gaussian nature of the
eigenfunctions relates to a ray description of these eigenfunc-
tions, where the ray contributions to the modal field at an obser-
vation point consist of many separate returns from the complex
cavity boundary that are uncorrelated [11], [7]. Experiments on
cavities with smooth walls have shown that deviations from this

Fig. 1. Fifty-ohm Smith chart for input impedance of monopole at 220 MHz
(� � 0:0609) with 10-MHz sweep and 4800 uniformly spaced frequency
points. “Bounding” power balance result comparison. Time dependence on the
experimental Smith charts ise .

simple density do arise and can be included as contributions cor-
responding to periodic ray trajectories [11], [14], [15].

The correlation function for the eigenfunction components is
different from that for scalar wavefunctions [11] and is given by
[2], [16]

(17)

where and the asymptotic symbol indicates the high
order modes.

IV. EXPERIMENTS AND SIMULATIONS

The parameter that describes the degree of spectral overlap is

(18)

This parameter is the ratio of the energy stored in the cavity
modes over a narrow spectral bandwidth (containing many com-
plete modes) to the same energy if the field amplitude is fixed
at the average peak level; it can be thought of as the ratio of
modal width to modal spacing. If the cavity is undermoded (sep-
arate discrete modal spectra) . If the cavity is over-
moded (many overlapping modes) . Figs. 1–3 show
Smith charts for the measured input impedance of near resonant
monopoles in the wall of a mode stirred chamber for the un-
dermoded through overmoded range. The large variation of the
input impedance exhibited over a relatively narrow frequency
band is motivation for a statistical treatment. Thus the data for
the input resistance shown in these figures will be reorganized
into an ordered distribution in all future figures.

The mode stirred chamber (37 ft23 ft 13 ft) has a volume
of m . The cavity is not simply a rectangular box,
since a mode stirrer was present in the chamber, but was not
moved during the frequency sweeps that generated the data.
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Fig. 2. Fifty-ohm Smith chart of input impedance of monopole at 920 MHz
(� � 2:16) with 1 MHz sweep and 801 uniformly spaced frequency points.
“Bounding” power balance result comparison.

Fig. 3. Fifty-ohm Smith chart of input impedance of monopole at 15 GHz
(� � 1206:7) with 10 MHz sweep and 801 uniformly spaced frequency points.
“Bounding” power balance result comparison.

The mode stirrer breaks degeneracy and makes Rayleigh sta-
tistics more applicable and slightly lowers the quality factor at
the lower frequencies (rotation of the stirrer would span fewer
resonant modes than the frequency sweeps at 220 MHz because
of its limited size). The quality factor of the chamber was de-
termined to have a mean value by examining the
3 dB width of isolated modes at 220 MHz (the transmit and
receive monopoles for this measurement, cm and

cm, respectively, with mm, were taken
as short as possible to minimize absorption, while maintaining
sufficient signal-to-noise ratio); at 920 MHz it was estimated
from the 220 MHz value, by the scaling , to be approxi-
mately ; at 15 GHz it was taken as the experimental
value (determined by measuring the mean field along with the
net power into the chamber) 1 280 000. The mean quality factor
at 220 MHz is significantly below the theoretical value

Fig. 4. Example of energy spectra when the cavity is overmoded�� 1.

Fig. 5. Example of energy spectra when the cavity is undermoded�� 1.

, where m is the wall sur-
face area and is the surface resistance of the walls
(where the skin depth is ,
H/m and S/m are the magnetic permeability and
electrical conductivity of the walls, respectively). A small part
of this reduction results from the roughness of the walls and
the presence of the stirrer. However, because the variation about
the mean is also larger than would be expected in a rectangular
cavity with finitely conducting walls, it is thought that other loss
mechanisms are present in the chamber.

The antennas were near-resonant wall-mounted monopoles.
The dimensions of the monopoles were mm,

cm at 220 MHz, cm at 920 MHz, and
mm with mm at 15 GHz.

Figs. 4 and 5 illustrate the behavior of the spectra for the two
limits of . Figs. 6 and 7 show comparisons of the monopole
input resistance with Monte Carlo simulation of the series

(19)

where we have approximated the summand (and are
approximated as constant also) since we are including only
those modes near the observation range ofvalues captured
in the figures (the range of included modes contains a
range of that is slightly larger than the observationrange
so that negligible error is incurred in this approximation).
The simulations were done with all three types of eigenvalue
spacings. The agreement with the experimental results is good;
although there is some small variation with realization of the
random numbers, the Rayleigh and uniform spacing results
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Fig. 6. Normalized input resistance distribution from simulations and experiment at 220 MHz (� � 0:0609).

Fig. 7. Normalized input resistance distribution from simulations and experiment at 920 MHz (� � 2:16).

are in slightly better agreement with measurements than the
Poisson spacing.

The near resonant monopoles in the experiment had nearly
zero free space reactance (except the 920 MHz antenna which
had the experimentally determined value ohms, time
dependence is used in the Smith chart figures). The experimen-
tally determined free space value of the radiation resistances
were 44 ohms at 220 MHz and 46 ohms at 920 MHz. These
experimental values of radiation resistance are slightly above the
values expected for such antennas but were nevertheless used to
normalize the cavity impedance data. The frequency span was

10 MHz with 4800 frequency points in the 220 MHz experiment;
the simulations used 200 modes with 1000 frequency points.
The frequency span was 1 MHz with 801 frequency points in the
920 MHz experiment; the simulations used 400 modes with 1000
frequency points. The frequency span was 10 MHz also with 801
frequency points in the 15 GHz experiment.

V. ASYMPTOTIC BEHAVIORS

Using the modal series (1) it can be shown that the frequency
average [taken over a narrow band, but including many complete
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modal spectra with mean spacing ] of the
normalized input impedance is nearly unity [1]

(20)

It can also be shown in the overmoded limit that by replacing
the modal sum by an integral (inserting in the sum-
mand) the normalized impedance approaches unity [1]

(21)

In the next two subsections the uniformly spaced modal series
is used to estimate the behaviors of the extreme values of the
impedance. The final subsection estimates the variance in the
overmoded limit.

A. Uniform Spacing, Single Mode

The undermoded limit has separated, discrete, spectra.
The largest values of the input resistance and reactance in this
region occur when is near a resonance. Thus we can consider
a single mode of the series (the mode closest to the observa-
tion frequency) and estimate the extreme statistics by regarding

to be a random variable with uniform density between
(for typically used uniform frequency sampling).

The distribution function, derived from the ratio of independent
random variables [17] (ratio of Gaussian squared to shifted uni-
form squared random variables), for this case is [1]

(22)

where the identity [18]
has been used and , are the

modified Bessel functions. Figs. 8 and 9 show this result (long
dashed curves) compared to measurements and Monte Carlo
simulations of (19) with uniform spectral spacing (is too large
in Fig. 9 for this result to be valid over any substantial range of

). Over most of the valid range (22) can be simplified to

(23)

However, near the upper limit of , the corresponding density
function exhibits exponential behavior that allows one to estab-
lish practical upper bounds for the resistance values

(24)

The normalized reactance also exhibits exponential behavior
near the upper limit (an averaging method [19] can be used to
give a more uniformly valid expression) [1]

(25)

which shows that the extreme reactance magnitude is approxi-
mately half the extreme resistance.

The number of independent samples in a frequency sweep
is dependent on the number of modes spanned. For example at

220 MHz there are only 141 modes in the frequency sweep even
though there are many more frequencies sampled. If, for ,
the frequency sweep is sufficiently fine to resolve the spectral
peaks (over-sampling in frequency) then the density function of
the peaks is of interest. Thus, near the upper limit ofwe can
set and find the single mode density function for the
peak values (the square of a Gaussian random variable)

(26)

The exponential behavior in (26) is the same as (24). The distri-
bution function for the peak values corresponding to (26) is

(27)

where is the error function, and the number of indepen-
dent samples corresponds to the number of modes contained in
the frequency sweep.

B. Uniform Spacing, Between Modes

The smallest values of the input resistance for occur
when is between modes. Taking the observation frequency

to be exactly between modes of the series (19) with uniform
spectral spacing, the modal terms can be taken in pairs about
the observation frequency, each pair having a simple exponen-
tial distribution. The infinite summation requires an infinite se-
quence of convolutions to be performed to obtain the density
function [17]. Using the Laplace transform to convert the con-
volutions to an infinite product, and using the identity [20]

to evaluate the product, the density can be found by inverse
transform of the resulting function for frequency samples be-
tween modes. The integral of the density function is thus the
distribution [1]

(28)

where from the residue method

(29)

An alternative representation for the density function ,
where , that converges
rapidly for , can also be obtained from the inverse trans-
form using the identity [21]

(although it is difficult to integrate to obtain the distribution
function) [1]

(30)
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Fig. 8. Comparison of asymptotic formulas, simulation, and experiment at 220 MHz with 10-MHz sweep.

Fig. 9. Comparison of asymptotic formulas, simulation, and experiment at 920 MHz with 1-MHz sweep.

Figs. 8 and 9 show the distribution function (28) (short dashed
curves) compared to measurements and Monte Carlo simula-
tions (this result describes the entire distribution in Fig. 9 since
the placement of the observation frequencyis not critical
when the modes are overlapping andis of order unity).

Using the second representation (30) we see that the density
function exhibits exponential decay for very small

(31)
which again allows one to establish practical lower bounds for
the input resistance. For , the term in the exponen-

tial can be dropped, and (31) can be integrated to give the distri-
bution function , where is
the complementary error function. The number of independent
samples, when we are over-sampling in frequency, is again the
number of modes spanned in the frequency sweep.

For of order unity, the first representation (29) can be used
to give

(32)

showing the exponential decay for large. If we take the over-
moded limit , from the second representation (31) we
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find that the normalized input resistance is Gaussian distributed
about the mean of unity

(33)

C. Overmoded Limit

By the central limit theorem [17] we expect both components
of the impedance to become Gaussian distributed in the over-
moded limit since many modes are equally contributing
to the modal series. Finding the variance of both components
thus allows us to write

(34)

where and are independent, normalized, zero mean Gaus-
sians, and the standard deviations are found to be [1]

(35)

VI. ELECTRICALLY LONGERANTENNA

The preceding analytical and simulation results were based
on the assumption of an electrically short dipole, but the ex-
periments were conducted using near resonant monopole an-
tennas. This conflicting situation will be resolved in the present
and next sections. Using the representations from the Appendix
(69), (74), (75), and (77), the integro-differential equation for
a center driven linear antenna (with drive voltage) inside a
cavity can be written as

(36)

where the second term is the local quasistatic contribution. The
antenna current distribution is the unknown. The antenna
is assumed to be thin and thus the local quasistatic term can be
thought of as approaching the transmission line form [22], [23]

(37)

This term, in addition to the boundary conditions

(38)

play a dominant role in determining the distribution of current
(at least up to the first resonance). By means of (37) and (38),
the leading term of the current can thus be taken as the usual
sinusoid

(39)

More accurate approximations could be constructed by the addi-
tion of random components to the distribution. The impedance
is then found by using this current, and the integro-differential
representation for the electric field (36), in the stationary (first
order corrections to the current do not contribute) EMF repre-
sentation (78) [6]

(40)

Noting that the integral of a Gaussian random process is a
Gaussian random variable [17] we find

(41)

where again the antenna ohmic resistance isand the local
reactance is (we are ignoring quasistatic images in the cavity
walls)

(42)

and are the sine and cosine integrals. The local
reactance (42) is simply the contribution of the local quasistatic
term (second term) in (36) to the impedance in (40). The quan-
tity in (41) is the variance of the stochastic integral ap-
pearing in the impedance representation (40) and is given by

(43)

A small error is made (mostly in the reactance) if we set
in for all values of [this approximation is consistent with
the previously discussed truncation of the series (19) in the range
of the resonant modes]. Note that, if is retained in , it can
be shown [1] in the overmoded limit , then the correct
total antenna reactance [6]

is produced rather than the value, that is obtained when the
approximation is invoked; at low frequencies ,

and become the same; even for , where the
dominant leading term of the reactance vanishes, the error is

ohms ersus the correct ohms. It is rec-
ognized that the right hand side of (43), with , is just

, where is the free space radiation resis-
tance of the electrically longer antenna [6]

(44)
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Fig. 10. Drawing of 3 dB wall enhancement field measurement at 220 MHz using dipole probe.

Therefore, using this simplification in (41), we find

(45)
Surprisingly, this is the same form we had previously for the
short antenna, except that the radiation resistance is now
the correct free space value for the electrically longer antenna.
Thus the quantity from the electrically
short antenna theory given before is approximately the same for
electrically longer antennas.

VII. M ONOPOLEANTENNA AND WALL BEHAVIOR

A previous paper [16] has shown that the correlation dyad
for the field is proportional to the imaginary part of the dyadic
Green’s function. Thus in a local vicinity of the cavity boundary
(near the wall mounted monopole antenna) at , we can use
the half space dyadic Green’s function to obtain the correlation
function transition near the cavity wall. The result is

(46)

Using this correlation function, it is easy to show [1] that the
impedance of a wall-mounted monopole is half that of the
dipole. Thus, again the quantity for the
monopole is the same as for the dipole (assuming is taken

to be the monopole free space radiation resistance), and the
comparisons with experiment, made above, are justified.

It is interesting that the known 3 dB wall enhancement of
the normal electric field [24], and its transition into the cavity
volume are represented by this half space correlation function

(47)
Figs. 10–12 show a mode stirred chamber experiment and re-
sults verifying the presence of this wall enhancement in the un-
dermoded region. The normal electric field distribution on the
wall is 3 dB higher than in the volume of the cavity (this is borne
out for the field as a function of frequency in Fig. 11, and ap-
proximately for the field at the resonant mode frequencies in
Fig. 12). The frequency range included in these figures is from
220–230 MHz (6381 points are included in the close spacing
in Fig. 11 and 5561 points are included in the far spacing in
Fig. 11).

VIII. POWER BALANCE

Now that the usefulness of the electrically short antenna
theory has been demonstrated, we return to the electrically
short antenna and develop a simple engineering model.

We break up the field at the antenna into the sum of a re-
flected part and a part radiated as if in free space. The
impedance components of the short dipole are correspondingly
broken into the sums

(48)
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Fig. 11. Electric field distribution from two dipole probes, one 6.9 cm from wall and one 3 m from wall, showing 3 dB wall enhancement.

Fig. 12. Electric field distribution from resonance peaks for both probes showing 3 dB wall enhancement.

and

(49)

The quantity is the free space radiation resistance associ-
ated with the field and is the local reactance associated
with the quasistatic part of the field . The quantities
and are associated with the reflected field from the cavity
wall . The wall impedance can be
written in terms of the received voltage at the dipole due to the
reflected field . Thus

(50)

where the received voltage has been determined from the effec-
tive height (the positive reference of the voltage is on the positive

arm of the antenna) of the short dipole, and the mean energy
density in the cavity is

(51)

where the subscript denotes volume average. Now using the
definition of cavity quality factor

(52)

with the average power into the antenna (the dissipated power)
given by

(53)

we obtain

(54)
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Introducing , given in (2), and , given by (18), into
(54), and using lower case impedances to denote the quantities

and (note that this
scaled reactance is really the same as, since was defined
with the local reactance subtracted out), we finally obtain

(55)

(56)

where

(57)

(58)

A. Extreme Values

The quantities and in (55) and (56) describe the fluctua-
tion of the real and imaginary parts of the reflected field at the
antenna location normalized by the mean cavity field. For the
present we assume and have normalized Gaussian densi-
ties with zero mean (this assumption is refined in the next sub-
section). To obtain an extreme value curve for the impedance
variation we could take these random variables to be fixed at,
say, the three sigma point of the underlying real and
imaginary Gaussian distributions. It is interesting to note that if
the cavity field is viewed as a three dimensional standing wave
in the frequency range of the fundamental cavity modes, then
the maximum-to-mean-ratio of the field is 8 : 1 , corresponding
to the value ; a value not very different from the
three sigma value ; these extreme results may there-
fore be useful at lower frequencies than anticipated. Setting

and and solving the quadratic
equation gives

(59)

(60)

where the sign is chosen consistent with the sign of . The
dashed circles in Figs. 1–3 are plots of these results with
(and ranging over values between and ). These extreme
circles provide a reasonable containment of the experimental
impedance variations. The radiation resistance of the 15 GHz
monopole was taken as the nominal 36 ohms value.

The extreme values of the real and imaginary parts on this
circle can be easily found as

(61)

(62)

The highly undermoded limit is
and . The highly over-

moded limit is and
, thus giving and .

B. Density

The distribution of input resistance generated by the power
balance results, with the normalized Gaussian assumption for
the normalized reflected field in (55), is shown as the dotted
curves in Figs. 13 and 14. The extreme values are reasonable
but the midrange distribution is not even close to the experi-
mental or simulation results. Using the modal series field rep-
resentation for a short dipole in a cavity we can generate the
actual distributions for and in (57) and (58), from which we
construct more accurate density function approximations. Using
short dipole representations from the Appendix (80) and (83) in
(82), along with (81) gives

(63)

where is taken to be real and positive (this choice is to
be noted when interpreting the real and imaginary parts of the
reflected field) and we have included only the resonant-range
terms in the final approximation. The first term, which corre-
sponds to the total normalized field at the antenna, has a positive
real part. The second term, which corresponds to the normalized
radiated field at the antenna, is negative real. Note that the local
quasistatic normalized field has been subtracted from each term
in the difference. In the undermoded limit , the first term
is imaginary except in the narrow frequency band about the res-
onances. The real part is thus skewed toward negative values.
Thus we try taking the asymmetric Gaussian density

(64)

as a fit to the density function of the real part of the normal-
ized reflected field (63). If we apply the result from (20), that

, we can determine the function ofas

(65)
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Fig. 13. Normalized input resistance distribution from simulation, power balance (the bandwidth modification curve uses the asymmetric Gaussian reflected field
distribution) and experiment at 220 MHz.

Fig. 14. Normalized input resistance distribution from simulation, power balance (the bandwidth modification curve uses the asymmetric Gaussian reflected field
distribution) and experiment at 920 MHz.

The function approaches as and approaches
1 as . Figs. 15 and 16 show a comparison of the
distributions for the real and imaginary parts of the normalized
reflected field obtained from Monte Carlo simulations of
the modal series representation (63) (solid curves), and the
asymmetric (short dashed curve) and symmetric (dotted curve)
Gaussian distributions

(66)

(67)

Fig. 15 used 500 modes; 100 modes at each end of the interval
are beyond the sampled frequency range. Fig. 16 used 1000
modes; 200 modes at each end of the interval are beyond the
sampled frequency range. The agreement is reasonably good.
The “kink” discrepancy in Fig. 15 is caused by the discontinuity
of the density function (64) at . The single mode approx-
imate distribution (23) can be transformed by means of
the quadratic relation to a dis-
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Fig. 15. Normalized reflected field from simulation and simple fit at� �

0:0609 (220 MHz).

Fig. 16. Normalized reflected field from simulation and simple fit at� � 2:16

(920 MHz).

tribution for the normalized real reflected field, for small values
of in the undermoded limit

(68)

This simple approximate distribution indicates how the “kink”
should be interpolated as shown by the long dashed curve in
Fig. 15. The short dashed curves in Figs. 13 and 14 show the
improvement in the power balance distributions by use of this
asymmetric Gaussian distribution (representing the limited
bandwidth of the resonances). The long dashed curve in Fig. 13
shows the single mode approximate distribution (23) at the
“kink” discrepancy.

The exponential decays of the density functions extracted in
the asymptotic analyzes are all reproduced by the power bal-
ance results. One might be tempted to use the asymmetrical
Gaussian distribution (66) to refine the extreme curves (59) and
(60), instead of basing these on the symmetrical three sigma

point . However, when the distributions are over-sam-
pled in frequency, such that the resonances are fully resolved
(for example the 220 MHz data), the extreme values must be de-
termined from the confidence levels associated with the number
of independent modes contained within the frequency sweep, as
discussed in (27). Thus, the use of the symmetrical estimate is
appropriate for the extremes, when the data is over-sampled in
frequency, but it is inappropriate for the midrange distribution.

IX. CONCLUSION

The input impedance of a linear antenna inside a high,
electrically large cavity has been investigated theoretically and
experimentally. Monte Carlo simulations based on a modal
series representation, with statistical estimates for modal
spacing and eigenfunction amplitudes, are found to agree
with measurements in a mode stirred chamber cavity. The
parameter , equal to the ratio of modal width
to modal spacing, determines the magnitude of the impedance
variations; the undermoded limit (separated, distinct modal
spectra) results in large variations; the overmoded limit
(many overlapping modes) results in small variations.
Asymptotic analysis of the modal series yields formulas for
the extreme values of the impedance. The modal series for an
electrically short antenna has been shown to approximately
represent resonant dipoles and wall-mounted monopoles, pro-
vided the local impedance and free space radiation resistance
parameters are appropriately modified. The half space correla-
tion function used for the monopole was shown to represent the
known 3 dB normal field enhancement near the cavity wall. A
simplified model based on balance of power gives practically
useful simple formulas for the impedance distributions and the
extreme values.

APPENDIX

FIELD REPRESENTATION

This section briefly summarizes the potential and field repre-
sentations [4], [5] (derivations can be found in [1]), introduces
the difference potential that is convenient for treating thin an-
tennas, and gives the impedance formula which uses these rep-
resentations. Using potentials with time dependence , the
electric field is

(69)

where in the Coulomb gauge . Using a modal series
for the cavity field [4], [5], [1], we can write

(70)

where is the antenna current, we have assumedis large
in the last expression, and the neglect of terms in
the numerator of (70) is justified here, because the frequency
spacing between modes is assumed to be much smaller than
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the frequencies of interest in this paper. The representation (70)
is derived in [1] and in [5] (where the solenoidal electric field
modes are proportional to the vector potential modes), and is
similar to that found in [4] when the frequency approaches an
eigenfrequency. The modal potentials satisfy the Helmholtz
equation , the gauge condition ,
the boundary condition , the normalization

, where , is the
vacuum velocity of light, and are the eigenfrequencies of
the simply connected, perfectly conducting, cavity. The quality
factor is defined by

(71)

where the cavity boundary surface is, the surface resistance is
, the skin depth is , and are

the magnetic permeability and electric conductivity of the wall,
and the modal magnetic field is . The quality
factor depends on but is expected to be weakly dependent on

, especially for large (at least for the majority of modes).
Because we wish to consider linear antennas with small ra-

dius (and initially small length) it is convenient to improve the
convergence of the modal series by subtracting out the qua-
sistatic limit of the series (the form of the current is
left untouched by this process, so in the electrically longer an-
tenna it is not the quasistatic distribution)

(72)

where the quasistatic limit is

(73)

where is the solenoidal part of the current. The approxima-
tions used in (73) ignore the boundary images of the source cur-
rent and should be reasonably accurate if the region occupied by
the antenna current is small compared to the cavity volume, the
antenna is not near the boundary (except in the monopole case
where we include the image in the wall where it is mounted), and
the observation point is near the antenna. For the linear antenna

of radius and length , with current ,
these become

(74)

(75)

The scalar potential in the Coulomb gauge can be taken as

(76)

where the modal potentials again satisfy the Helmholtz equation
, the boundary condition , and nor-

malization , where are the eigen-
values of the simply connected, perfectly conducting, cavity.
The final approximation in (76) again ignores images in the
cavity boundary. Using the continuity equation
gives , where is the charge per unit length on the
linear antenna. Thus, on the antenna we have

(77)

The antenna impedance is then found by using the stationary
EMF representation [6]

(78)

A. Short Dipole

The modal series field representation (70) for a short dipole
in a cavity is

(79)

and the difference field from (74) is

(80)
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Ignoring the scalar potential contribution in (79), since this term
will have negligible contribution over most of the volume, we
find

(81)

The reflected field is written as

(82)

where is the field radiated by the antenna in free space. The
first term in parenthesis is (80) and the second term is found
from the EMF expression (78) applied to a short dipole (the
local quasistatic field in the second term is approximated as not
including images in the cavity walls)

(83)

where is the impedance of the dipole in free space and the
local impedance is (3).
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